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First Order Drug Elimination Kinetics 

 

Introduction 

Understanding the kinetics of drug elimination is paramount for the design of appropriate dosage 

regimens. For most drugs, some minimum concentration is needed to achieve a therapeutic 

benefit. However, toxic effects may occur if the concentration of the drug becomes too high. The 

challenge therefore is to design a dosage schedule which maintains the concentration above the 

minimum therapeutic concentration, but below the threshold for toxic effects. Furthermore, the 

schedule should also be convenient and feasible for the patient to follow. A final consideration is 

how long it takes to reach the therapeutic concentration. For certain drug therapies it is essential 

that it be obtained quickly. Designing these schedules therefore requires a quantitative 

description of drug concentration in patients as a function of time for different dosage regimens. 

The elimination of many drugs from the body follows ideal first order kinetics, meaning that 

their rate of elimination is proportional to their concentration. Thus, in this article I develop 

equations to describe the first order elimination of drugs from the body. I consider single discrete 

doses, periodic doses, as well as continuous administration. 

 

Single discrete dose 

Let 𝐶(𝑡) be the concentration of drug molecule in a patient at time 𝑡. Suppose that the drug is 

eliminated from the body through a first order process with the apparent rate constant 𝑘. 

Consider a single dose of 𝑚 grams. The initial concentration (𝐶0) which results depends on the 

drug’s volume of distribution (𝑉𝑑) and bioavailability (𝐹). The initial concentration in the body 

is: 

𝐶0 =
𝑚

𝑉𝑑𝐹
 

  Since the dose increases 𝐶(𝑡) by the value of 𝐶0, it is simplest to write the kinetic equations in 

terms of 𝐶0 instead of 𝑚. Since drug elimination is assumed to follow a first order rate law: 

𝑑𝐶

𝑑𝑡
= −𝑘𝐶(𝑡) 

Solving this differential equation gives: 

𝐶(𝑡) = 𝐶0𝑒
−𝑘𝑡 
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The concentration therefore follows an exponential decay as a function of time. A few examples 

given different values of 𝐶0 and 𝑘 are plotted below: 

 

The drug concentration decreases according to an exponential decay. The steepness of the decay 

is determined by the first order rate constant (𝑘), while the overall size of the curve is determined 

by the dosage size (𝐶0). 

 

Periodic discrete doses 

General equation 

Since drug concentration decreases according to an exponential decay, the drug must be re-

administered regularly to maintain it at a given level. Drugs doses are therefore often taken at 

regular intervals. For instance, a pill could be taken every 6 hours. The three important 

modifiable parameters are the dosage size (𝐶0), the time between each dose (𝑑), and the first 

order rate constant for the elimination of the drug (𝑘). Thus, discrete doses of the drug is 

administered at the times = 0, 𝑑, 2𝑑 … 𝑛. The concentration immediately after each dose is 

administered is 𝐶0 plus whatever concentration of drug was left from the previous dose(s). Thus, 

we could write this as a piecewise function, each time window described by an exponential 

decay with a different initial value: 
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𝐶(𝑡) =

{
 
 

 
 𝐶0𝑒

−𝑘𝑡                                                    𝑡 ≤ 𝑑

𝐶0(1 + 𝑒
−𝑑𝑘)𝑒−𝑘𝑡                   𝑑 < 𝑡 ≤ 2𝑑

𝐶0[(1 + 𝑒
−𝑑𝑡)𝑒−2𝑘𝑑 + 1]𝑒−𝑘𝑡      𝑡 > 2𝑑

 
⋮

 

More conveniently, we can alternatively treat each drug dose as an independent elimination 

exponential decay. This allows the concentration function to be written as a growing sum of 

phase-shifted exponential terms: 

𝐶(𝑡) =

{
 
 
 

 
 
 
𝐶0𝑒

−𝑘𝑡                                                                      𝑡 ≤ 𝑑

𝐶0𝑒
−𝑘𝑡 + [𝐶]0𝑒

−𝑘(𝑡−𝑑)                            𝑑 < 𝑡 ≤ 2𝑑

𝐶0𝑒
−𝑘𝑡 + 𝐶0𝑒

−𝑘(𝑡−𝑑) + 𝐶0𝑒
−𝑘(𝑡−2𝑑)  2𝑑 < 𝑡 ≤ 3𝑑

 
⋮

𝐶0∑𝑒−𝑘(𝑡−𝑛𝑑)
𝑛

𝑛=0

                          𝑛𝑑 < 𝑡 ≤ (𝑛 + 1)𝑑

 

Where 𝑛 is the number of additional doses that have been administered at time 𝑡. For instance, 

the first dose corresponds to 𝑛 = 0, the second to 𝑛 = 1, and so forth. A few examples of these 

dose regimens are plotted below: 
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The drug concentration increases after each dose and subsequently decreases by an exponential 

decay until the next dose is given. Over time a steady state is reached where the rate that drug is 

eliminated from the patient is equal to the rate at which it is administered. 

 

Properties of the steady state 

For any set of values of 𝑘, 𝑑, and 𝐶0 we have seen that a steady state is eventually reached where 

the average rate of drug elimination (𝑅out) is equal to the average rate at which it is administered 

(𝑅in). This region of the curve is particularly important, as any drug given chronically on a 

consistent schedule will eventually enter this phase.  I will therefore characterize this region 

fully, including calculating the concentration maximum (𝑀), minimum (𝐵), average (𝐶avg), and 

range (∆) at steady state. Firstly, we can calculate the maximum by developing expressions for 

𝑅in and 𝑅out. 

 

Every 𝑑 time units drug is administered, increasing the serum concentration by 𝐶0. thus the 

average rate is: 

𝑅in = 
𝐶0
𝑑

 

To calculate the amount of drug eliminated over each 𝑑 time units we must consider the 

exponential decay starting from the maximum concentration at steady state (𝑀). Starting from a 

new dose at steady state, 𝐶(𝑡) is given by: 

𝐶(𝑡) = 𝑀𝑒−𝑘𝑡 

To find the average rate of drug elimination we can calculate the decrease in 𝐶(𝑡) from 𝑡 = 0 to 

𝑡 = 𝑑 according to this exponential decay: 

𝑅out =
𝐶(𝑑) − 𝐶(0)

𝑑
=
𝑀

𝑑
(𝑒−𝑘𝑑 − 1) 

 

𝑅𝑖𝑛 = −𝑅𝑜𝑢𝑡 →
𝐶0
𝑑
= −

𝑀

𝑑
(𝑒−𝑘𝑑 − 1) 

𝑀 =
𝐶0

1 − e−𝑘𝑑
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Next, I will calculate the minimum concentration at steady state. The minimum concentration 

(𝐵) occurs at the end of each dose interval, the time immediately before the administration of the 

next dose (𝑡 = 𝑑): 

𝐵 = 𝑀𝑒−𝑘𝑑 =
𝐶0𝑒

−𝑘𝑑

1 − 𝑒−𝑘𝑑
 

 

Another parameter of interest is the average drug concentration at steady state (𝐶avg). We can 

compute this by integrating the steady state exponential decay from when a new dose is given 

(𝑡 = 0) to when the next one is (𝑡 = 𝑑). Division of this area by the dosage time, 𝑑, gives the 

average: 

𝐶avg =
1

𝑑
∫ 𝑀𝑒−𝑘𝑡
𝑑

0

𝑑𝑡 =
𝑀(1 − 𝑒−𝑘𝑑)

𝑘𝑑
=

𝐶0
1 − 𝑒−𝑘𝑑

1 − 𝑒−𝑘𝑑

𝑘𝑑
 

𝐶avg =
𝐶0
𝑘𝑑

 

Thus, the drug concentration at steady state can be increased by increasing the dosage 

(increasing 𝐶0), giving dosages more frequently (decreasing 𝑑), or decreasing the first order rate 

constant for the drug’s elimination (decreasing 𝑘). 

 

Lastly, we can calculate the range of drug concentrations spanned at steady-state (∆): 

∆ = 𝑀 − 𝐵 =
𝐶0

1 − e−𝑘𝑑
−
𝐶0𝑒

−𝑘𝑑

1 − 𝑒−𝑘𝑑
=
𝐶0(1 − 𝑒

−𝑘𝑑)

1 − e−𝑘𝑑
 

∆ = 𝑀 − 𝐵 = 𝐶0 

Interesting, the range of drug concentrations spanned at steady state (∆) is independent of dosage 

frequency (𝑑) and the rate constant of drug elimination (𝑘); it depends only on the dosage size 

(𝐶0). This result is expected when the nature of the steady state is considered: a steady state is 

reached when over each dosage interval the amount of drug eliminated is equal to the dosage 

size. Thus, the range of concentrations spanned at the steady state must simply be the dosage 

size. 

 

 

  

https://sciencesnail.com/


Copyright © 2016 The Science Snail 

https://sciencesnail.com/ 

Rate of steady state attainment 

To follow the rate of steady state attainment, we can calculate the maximum concentration 

obtained upon administering the 𝑛th dose (𝑚). The steady state is attained when 𝑅in = −𝑅out . 

Before this point, there is a net gain from each dose as 𝑅in– 𝑅out >  0. Since the drug is 

eliminated from the body according to a first order rate law, the rate of increase of this maximum 

is proportional to the difference between the current maximum and the steady state maximum. 

Furthermore, this rate is proportional to the parameters 𝑘 and 𝑑. This is because increasing either 

decreases 𝐶avg and thus increases the rate at which steady state can be obtained. Thus: 

𝑑𝑚

𝑑𝑛
= 𝑘𝑑(𝑀 −𝑚) 

∫
1

𝑀 −𝑚
𝑑𝑚 = ∫(𝑘𝑑)𝑑𝑛 

∴ 𝑚(𝑛) = 𝑋𝑒−𝑘𝑑𝑛 +𝑀 

Where 𝑋 is an unknown constant resulting from the integration. 

𝑚(0) = 𝑋 +𝑀 = 𝐶0 → 𝑋 = 𝐶0 −𝑀 

𝑚(𝑛) = (𝐶0 −𝑀)𝑒
−𝑘𝑑𝑛 +𝑀 

 

Next, the minimum concentration during the 𝑛th dose (𝑏) can be found. It is given by the 

concentration remaining after an exponential decay for 𝑑 time units from the most recent 

maximum (𝑚): 

𝑏(𝑛) = 𝑚(𝑛)𝑒−𝑘𝑑 

 

To explicitly describe the rate at which the steady state can be obtained, we can consider the 

dosage number (𝑛) at a given fraction (𝑓) of the maximum concentration at steady-state is 

attained: 

𝑚(𝑛𝑓) = ([𝐶]0 −𝑀)𝑒
−𝑘𝑑𝑛𝑓 +𝑀 ≥ 𝑓𝑀 

𝑛𝑓 = ⌈
1

𝑘𝑑
ln (

𝑀 − 𝐶0
(1 − 𝑓)𝑀

)⌉ 
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The brackets refer to the ceiling function, if 𝑛𝑓 is not an integer, this function rounds the number 

to the nearest greater integer. This is necessary since the dosages are administered discretely. We 

must round up to get the dosage number for which 𝑚(𝑛𝑓) ≥ 𝑓𝑀. 

It is easy to calculate the time (𝑡𝑓) corresponding to 𝑛𝑓: 

𝑡𝑓 = 𝑛𝑓𝑑 

For instance, the time for the patient’s drug concentration to reach at least half of the theoretical 

maximum (𝑡1/2) is: 

𝑡1/2 = 𝑑 ⌈
1

𝑘𝑑
ln (2

𝑀 − 𝐶0
𝑀

)⌉ 

Another concentration-time profile for periodic discrete doses is shown below (blue line). To 

illustrate that these derived equations really do describe the properties of the curve, it is 

annotated with the parameters as calculated by my equations. 
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The equations accurately predict the concentration maximum (𝑀), minimum (𝐵), average (𝐶avg), 

and range (∆) at steady state. Furthermore, the time to reach at least half of the maximum drug 

concentration (𝑡1/2) is correctly predicted. Lastly, the local maxima (𝑚) and minima (𝑏) as a 

function of dose number (𝑛) are in excellent agreement with the actual values. While only one 

case is shown, extensive testing of these equations showed that they robustly predict the exact 

values for these features given any 𝐶0, 𝑘, and 𝑑.  

 

Continuous administration 

Although discrete drug dosages are often convenient, continuous drug administration is also a 

commonly practiced. For instance, intravenous injection at a constant, slow flow rate. Note that a 

single injection of a drug, rather than continuous injection, should be modelled as a single 

discrete dose. In general, injection affords faster administration and higher bioavailability. If 

continuous, it also allows an exact concentration to be reached and maintained, rather than a 

range of concentrations as for periodic discrete doses. Suppose that a constant rate of drug 

administration (𝑣) is maintained such that: 

𝑣 = 𝑅𝑖𝑛 =
1

𝑉𝑑

𝑑𝑚

𝑑𝑡
 

Where 𝑚 is the mass of drug administered and 𝑉𝑑 is the volume of distribution as before. Note 

that for intravenous injection the bioavailability is maximum (𝐹 = 1). The rate of change of drug 

concentration is now determined by two terms, one for the continuous addition of drug and the 

other for its first order elimination from the body: 

𝑑𝐶

𝑑𝑡
= 𝑣 − 𝑘𝐶 

Solving this differential equation gives: 

𝐶(𝑡) = 𝑋𝑒−𝑘𝑡 +
𝑣

𝑘
 

Where 𝑋 is an unknown constant resulting from integration. 

𝐶(0) = 𝑋 +
𝑣

𝑘
= 0 → 𝑋 = −

𝑣

𝑘
 

𝐶(𝑡) =
𝑣

𝑘
(1 − 𝑒−𝑘𝑡) 

A few examples of this equation for different values of 𝑣 and 𝑘 are plotted below. 
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A steady state is eventually reached where the rate of drug into the patient (𝑣) is equal to the rate 

it is eliminated. The maximum concentration of drug obtained (𝑀) can be determined by the 

following limit: 

𝑀 = lim
𝑡→∞

[
𝑣

𝑘
(1 − 𝑒−𝑘𝑡)] 

𝑀 =
𝑣

𝑘
 

As for periodic discrete doses, the steady state concentration can be increased by increasing the 

dosage (increasing 𝑣) or decreasing the first order rate constant for the drug’s elimination 

(decreasing 𝑘) 

We can monitor the system’s approach to steady state by considering the concentration (𝐶) as a 

fraction of the maximum (𝑀): 

𝑓(𝑡𝑓) =
𝐶(𝑡𝑓)

𝑀
= 1 − 𝑒−𝑘𝑡𝑓  

The time 𝑡𝑓 to attain a fraction 𝑓 of the maximum is thus: 
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𝑡𝑓 = −
ln(1 − 𝑓)

𝑘
 

For instance, the time to reach half of the maximum concentration (𝑡1/2) is: 

𝑡1/2 =
ln 2

𝑘
 

As expected, increasing the rate constant for drug elimination (𝑘) decreases the time required to 

reach the steady state and decreases 𝑡𝑓. 

 

Conclusion 

Equations have been developed to model the drug concentration in patients as a function of time 

for drugs whose elimination follows first order kinetics. This was done for a variety of 

commonly used dosage regimens: single discrete doses, periodic discrete doses, and continuous 

administration. In addition to general equations for the concentration as a function of time, the 

properties of the steady state and the rate of steady state attainment were quantitatively 

described. These equations facilitate the precise and efficient design of dosage regimens for new 

drugs to achieve whatever properties are desired clinically. 
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